

CS 4732
MACHINE VISION

PROJECT 1

IMAGE RESOLUTION

INSTRUCTOR

 Dr. Mahmut KARAKAYA

Michael Rizig

001008703

2

1. ABSTRACT

In this project, we are given 3 variables to mainipulate in images: Sampling, Qualtization,

and Color Quantization. For the first file of this project (Sampling), we are given and 1024x1024

image and downsample the image into resolutions of 512x512, 256x256, 128x128, 64x64, and

finally 32x32, then upsample the image step by step back to 1024. This downsampling was done

by selecing the first pixel in every unique neighborhood of 4 and using that pixel in the output

image for each level. By doing this, we half the veritcal and horizontal resolution by 2 each,

giving us an output half the size as the input. In the second file (Quantization) we are

downscaling the greylevel of an image from 8 bit (256 grey levels) down to 1 bit (2 grey levels),

halving the numeber of levels in each step. To do this, we take the input greyscale levels (256)

and divide it by 2 to the power of how many bits we want, giving us the grey level. We then take

this ratio, take the floor of it, and multiply it back by the same ratio to give us the new lower count

of greylevels. Finally for the third file (Color Quantizaton) we are essentially doing the same thing

as greyscale downscaling, but for each color channel of the image (R,G,B).

To view all edits, changes, and see step by step revision history, view this project on my github:

https://github.com/michaelrzg/CS4732-Projects

2. TEST RESULTS

2.1 Test Results for Downsampling
All images at each level downscale are included in zip file output>sampling. These are just a few
selected images to highlight effect. (each step begins with original image)

Image 1a : Original Image at 1024x1024 resolution. This is the input image.

Image 1b: After 2 downsamples down to 256x256, we see that we lose detail in the finer

aspects of the image (such as the whiskers)

İmage 1c: After 2 more downsamples, we get an image at 64x64, and at this point we see clear

signs of artificating around the whiskers and eyes, and hairs around the ears.

İmage 1d: After another downsample, we arrive at an image at 32x32 and we can clearly see we

have lost almsot all fine details, and are left with a very absrtact image of a cat.

2.2 Test Results for Upsampling
All images at each level upscale are included in zip file output>sampling. These are just a few
selected images to highlight effect. (each step begins with original image)

Image 2a : We begin at the last downscaled image (32x32). This is the input image for

upsampling.

Image 2b: After the first upsample up to 64x64, we see that although we have more pixels we

are not gaining any new details in the image, and we essentally have the same image with

slightly less blur.

https://github.com/michaelrzg/CS4732-Projects

3

İmage 2c: After 2 more upsamples, we get an image at 256x256, and at this point we can clearly

see that upsampling the image without inserting any new pixels gives no added detail, just less

blur.

İmage 2d: After another two more upsamples, we end with the final resolution of 1024x1024,

and we can see that it is just as lacking in detail but we have more pixels lending to slightly less

blur.

(a)

(b)

(c)

(d)

Figure 1: (a) Original cat image (input/cat.jpg),(b) cat downsampled to 256x256 pixels

(output/sampling/downscale-2.jpg), (c) cat downscaled to 64x64 pixels (output/

sampling/downscale-4.jpg), (d) cat downscaled to 32x32 pixels (output/ sampling/downscale-

5.jpg).

4

(a)

(b)

(c)

(d)

Figure 2: (a) Original cat image from downscaling (output/downscale-5.jpg),(b) cat upsampled to

64x64 (output/upscale-1.jpg), (c) cat upscaled to 256x256 pixels (output/upscale-3.jpg), (d) cat

upscaled to 1024x1024 (output/upscale-5.jpg).

2.3 Test Results for Image Quantization (Greyscale)
All images at each grey level are included in zip file output>grey. These are just a few selected
images to highlight effect. (each step begins with original image)

Image 3a : Original Greyscale image at 256 grey levels (8 bit) . This is the input image.

Image 3b: After the first quantization, we reduce the number of grey levels from 256 to 128 (8 bit

to 7 bit) we see that we lose some detail in the background, but very minimal and easy to miss.

İmage 3c: After another reduction we take the image down from 128 to 64 grey levels (7 bit to 6

bit). We can see some considerable detail loss in the apple and background.

İmage 3d: After 2 more reductions, we take the image down from 64 to 16 grey levels (6 bit to 4

bit). We can see some considerable resolution loss.

İmage 3e: After another 2 reductions, we take the image from 16 to 4 grey levels (4 bit to 2 bit)

İmage 3f: finally, we take the image all the way to the minimum greyscale bits (1), utilizng only 2

levels.

5

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: (a) Original Greyscale image at 256 grey levels (8 bit) (input/apple.jpeg),(b) apple

reduced from 8 bit to 7 bit grey levels(output/grey/greyscale7-bits.jpeg), (c) apple reduced from 7

to 6 bits grey level(output/grey/greyscale6-bits.jpeg), (d) apple reduced to 4 bits greyscale

(output/grey/greyscale4-bits.jpeg), (e) apple reduced to 2 bits (output/grey/greyscale2-bits.jpeg),

(f) apple reduced to 1 bit (output/grey/greyscale1-bits.jpeg)

2.4 Test Results for Image Color Quantization
All images at each color level are included in zip file output>color. (each step begins with original
image)

Image 4a : Original color image at 2^24 color levels (8bit R, 8-bit G, 8-bit B) . This is the input

image.

Image 4b: After the first quantization, we reduce the number of colors from 2^24 to 2^12 (4-bit R,

4-bit G, 4-bit B). At this point the image is not too differnet, but slightly noticable.

6

İmage 4c: After the next quantizaton, we reduce the number of colors from 2^24 to 2^6 (2-bit R,

2-bit G, 2-Bit B). At this point, color distortion is very noticable and the image loses quality

bascally everywhere.

İmage 4d: At the final quantization, we reduce the image from 2^24 down to 2^3 (1-bit R, 1-bit G,

1-bit B). At this point, all values that are not close to a solid primary color (R, G or B) are

combined into black and white, or Cyan, Yellow, Magenta..

(a)

(b)

(c)

(d)

Figure 4: (a)Original Cat image, with 2^24 colors (input/cat.jpg),(b) cat reduced to 2^12 color

levels(output/color/downcolor12bits.jpg), (c) cat reduced to 6 bit

color(output/color/downcolor6bits.jpg), (d) cat redced to 3 bit color

(output/color/downcolor3bits.jpg).

3. DİSCUSSİON

In this project, we learned many things about each of the tested factors of an image and

how they effect the overall look of an image. For sampling, we can clearly see that

7

downsampling an image to a lower resolution loses a lot of detail. These details can not be

regained by simply upscaing the image, and you would have to insert new pixels into the gaps to

upscale an image. For greyscale quantization, we learn that as we decrease the grey levels of

an image, we lose a lot of finer details in the background, and areas of the image with a lot lof

closely colored pixels (such as the apple in our case). We also can note that we lose a lot of the

grey resolution details and levels, which we cannot gain back. Finally, for the color quantization,

we learn that as we lose levels of colors, our image resorts closer and close to a primary colors

image, and by the very end we lose alot of details and see the image consists of only primary

and combinaton colors (R,G,B, M, Y, C) and black/white. Given more time, it would be

interesting to see how this effect works with images with dfferent aspect ratios, or extremely high

resolutions (like 8K +). Overall, I’ve learned a lot from this project.

4. CODE

4.1 Code for Image Sampling (sampling.py)

Michael Rizig

Project 1: Digital Image Processing

001008703

File 1: Sampling

6/4/2024

#nessessary imports:

from skimage import io

import matplotlib.pyplot as plottool

import numpy as np

import cv2

#read in image:

catImagePath = 'input/cat.jpg'

alqita = io.imread(catImagePath)

#obtain shape of image matrix:

shape = alqita.shape

#start by setting dowsample factor to 2

factor=2

#create output image as a numpy 3d 0's array:

xSampledImage = np.zeros((int(shape[0]/factor),int(shape[1]/factor),3),

dtype=np.uint8)

8

#print image dimentions:

print("Input image dimentions: ",shape)

#display original image:

plottool.imshow(alqita)

plottool.show()

#loop through to show 5 different scales:

for k in range(5):

 #print current dimensions:

 print("Current dimentions: ",xSampledImage.shape[0],

"x",xSampledImage.shape[1])

 #currentPixel=image[0,0]

 #iterating through the entire image

 for i in range(0,shape[0]-1,factor):

 for j in range(0,shape[1]-1,factor):

 # we are setting the output pixel to the given input pixel

 # we divide by the factor when accessing the output image becase

the output image is smaller, so a 1:1 access would cause out of bounds exception

 xSampledImage[int(i/factor),int(j/factor)]=alqita[i,j]

 #show result of current downscale:

 plottool.imshow(xSampledImage)

 plottool.show()

 #shift colors to rgb

 xSampledImage = cv2.cvtColor(xSampledImage, cv2.COLOR_BGR2RGB)

 cv2.imwrite(f'output/sampling/downscale-{k+1}.jpg',xSampledImage)

 #increaes downscale:

 factor=factor*2

 #reset output image:

 if(k!=4):

 xSampledImage = np.zeros((int(shape[0]/factor),int(shape[1]/factor),3),

dtype=np.uint8)

#now we upscale the image in the same fashon as before:

print("---end of downsampling, begining of upsampling---")

#save final downsampled image as new starting image

alqita = xSampledImage.copy()

#reset variables

shape = alqita.shape

factor=2

9

xSampledImage = np.zeros((int(shape[0]*factor),int(shape[1]*factor),3),

dtype=np.uint8)

for k in range(5):

 #print current dimensions:

 print("Current resolution: ",xSampledImage.shape[0],

"x",xSampledImage.shape[1])

 #currentPixel=image[0,0]

 # since we are upscaing, we need to mutliply the range by our factor to

ensure our output image has the correct number of pixels

 for i in range(0,shape[0]*factor,1):

 for j in range(0,shape[1]*factor,1):

 # since we are making a smaller image bigger, we need to divide

the equivalent pixel i and j value by the factor of incresae so we dont get a

memory segmentation falut trying to acccess the image

 # convert each value to integer incase we have an input image

that is not square and we get a float value after divison

 xSampledImage[i,j]=alqita[int(i/factor),int(j/factor)]

 #show result of current upscale:

 plottool.imshow(xSampledImage)

 plottool.show()

 #shift colors to rgb

 #output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)

 cv2.imwrite(f'output/sampling/upscale-{k+1}.jpg',xSampledImage)

 #increaes upscale:

 factor=factor*2

 #reset output image:

 if(k!=4):

 xSampledImage = np.zeros((int(shape[0]*factor),int(shape[1]*factor),3),

dtype=np.uint8)

4.2 Code for Image Quantization (Quantization.py)

Michael Rizig

Project 1: Digital Image Processing

001008703

File 2: Quantization

6/6/2024

imports

from skimage import io

10

import matplotlib.pyplot as plottool

import cv2

this function takes in desired bit count and a given pixels grey value

and returns a conversion into the passed in bitcount greyscale value

def filter(bits, x):

 # base case: if image is being converted into binary, simply check and return

1 or 0

 if bits==1:

 if x>127:

 return 255

 return 0

 # for every other case: divide 256 (starting value) by number of greyscale

levels desired

 val = 256 / 2**bits

 # by dividing current pixel by ratio of 256/greyscale levels and convering

from float to integer, we are essentially taking the floor of that value

 # by multiplying it by the original value, we lose any deviation from a even

multiple, giving us n=bits possible outputs, properly scaled

 # example: x=126; bits=4

 # val = 256/16 = 16

 # this means we only have 16 possible values for greyscale, those being :

0,16,32,48,64,80,96,112,128,144 etc

 # because of this fact, we are mimicing an n-bit greyscale by only displaying

2**n grey levels

 # 126 / 16 = 7.875; convering to int, 7.875 = 7

 # finally multiplying by 16 gives us 112.

 return val * int(x*(1/val))

define path for image

path = 'input/apple.jpeg'

read in image into memory

image = io.imread(path)

convert image from brg to rgb

image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

create output image

out = image.copy()

display initial image

print("Initial image: ")

plottool.imshow(image)

plottool.show()

for divisor in range (7,0,-1):

 for k in range(0,image.shape[0]):

 for j in range(0, image.shape[1]):

11

 v = filter(divisor,int(image[k][j][0]))

 out[k][j] = [v,v,v]

 print("Image greyscaled down from ", divisor+1 , " bits to " , divisor, "

bits: ")

 # display current image

 plottool.imshow(out)

 plottool.show()

 # save current image with unique name

 cv2.imwrite(f'output/grey/greyscale{divisor}-bits.jpeg',out)

 # reset out image to original for next pass

 out = image.copy()

4.3 Code for Image Color Quantization (ColorQuantization.py)

Michael Rizig

Project 1: Digital Image Processing

001008703

File 3: Color Quantization

6/8/2024

imports

from skimage import io

import matplotlib.pyplot as plottool

import cv2

this function takes in desired bit count and a given pixels grey value from

file 2

we are repurposing it for this file to change color levels

def filter(bits, x):

 # base case: if pixel is being converted into binary, simply check and return 1

or 0

 if bits==1:

 if x>127:

 return 255

 return 0

 val = 256 / 2**bits

 # by dividing current pixel by ratio of 256/levels and convering from float

to integer, we are essentially taking the floor of that value

 # by multiplying it by the original value, we lose any deviation from a even

multiple, giving us n=bits possible outputs, properly scaled

 # example: x=126; bits=4

 # val = 256/16 = 16

 # this means we only have 16 possible values for greyscale, those being :

0,16,32,48,64,80,96,112,128,144 etc

12

 # because of this fact, we are mimicing an n-bit greyscale by only displaying

2**n grey levels

 # 126 / 16 = 7.875; convering to int, 7.875 = 7

 # finally multiplying by 16 gives us 112.

 return val * int(x*(1/val))

#grab inital image same way as files 1 and 2

path = 'input/cat.jpg'

baseImage = io.imread(path)

#show initial image

plottool.imshow(baseImage)

plottool.show()

#create output image

out = baseImage.copy()

#color shift if needed

#cv2.cvtColor(baseImage,cv2.COLOR_BGR2RGB)

#define a divisor vector to contain each level of colors we desire

divisor = [12,6,3]

#loop through colors

for k in range (0,3):

 #loop through image pixels

 for i in range(baseImage.shape[0]):

 for j in range(baseImage.shape[1]):

 #loop through each color channel

 for pixel in range(0,3):

 #update each channel to fit given number of colors for each

(divisor/3 since we have 3 colors)

 out[i][j][pixel] = filter(divisor[k]/3,baseImage[i][j][pixel])

 print('Image color levels from ',divisor[k]*2, " to " , divisor[k])

 #plot image

 plottool.imshow(out)

 #display image

 plottool.show()

 #convert colors

 out = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)

 #save image with appropriate name

 cv2.imwrite(f'output/color/downcolor{divisor[k]}bits-{k}.jpg',out)

 # restore output image to original quality for next itteration

 out=baseImage.copy()

